Bomba atómica
Una bomba atómica es un dispositivo que obtiene una gran cantidad de energía explosiva con reacciones nucleares. Su funcionamiento se basa en provocar una reacción nuclear en cadena descontrolada. Se encuentra entre las denominadas armas de destrucción masiva y su explosión produce una distintiva nube en forma de hongo. La bomba atómica fue desarrollada por Estados Unidos durante la Segunda Guerra Mundial gracias al Proyecto Manhattan, y es el único país que ha hecho uso de ella en combate (en 1945, contra las ciudades japonesas de Hiroshima y Nagasaki).
Su procedimiento se basa en la fisión de un núcleo pesado en elementos más ligeros mediante el bombardeo de neutrones que, al impactar en dicho material, provocan una reacción nuclear en cadena. Para que esto suceda hace falta usar núcleos fisibles o fisionables como el uranio-235 o el plutonio-239. Según el mecanismo y el material usado se conocen dos métodos distintos para generar una explosión nuclear: el de la bomba de uranio y el de la de plutonio.
En este caso, a una masa de uranio llamada subcrítica se le añade una cantidad del mismo elemento químico para conseguir una masa crítica que comienza a fisionar por sí misma. Al mismo tiempo se le añaden otros elementos que potencian (le dan más fuerza) la creación de neutrones libres que aceleran la reacción en cadena, provocando la destrucción de un área determinada por la onda de choque desencadenada por la liberación de neutrones.
Índice[ocultar] |
[editar] Bomba de plutonio
El arma de plutonio es más moderna y tiene un diseño más complicado. La masa fisionable se rodea de explosivos convencionales como el RDX, especialmente diseñados para comprimir el plutonio, de forma que una bola de plutonio del tamaño de una pelota de tenis se reduce casi al instante al tamaño de una canica, aumentando increíblemente la densidad del material, que entra instantáneamente en una reacción en cadena de fisión nuclear descontrolada, provocando la explosión y la destrucción total dentro de un perímetro limitado, además de que el entorno circundante se vuelva altamente radiactivo, dejando secuelas graves en el organismo de cualquier ser vivo.
[editar] Bomba de hidrógeno o termonuclear
Las bombas de hidrógeno lo que realizan es la fusión (no la fisión) de núcleos ligeros (isótopos del hidrógeno) en núcleos más pesados.
La bomba de hidrógeno (bomba H), bomba térmica de fusión o bomba termonuclear se basa en la obtención de la energía desprendida al fusionarse dos núcleos atómicos, en lugar de la fisión de los mismos.
La energía se desprende al fusionarse los núcleos de deuterio (2H) y de tritio (3H), dos isótopos del hidrógeno, para dar un núcleo de helio. La reacción en cadena se propaga por los neutrones de alta energía desprendidos en la reacción.
Para iniciar este tipo de reacción en cadena es necesario un gran aporte de energía, por lo que todas las bombas de fusión contienen un elemento llamado iniciador o primario, que no es sino una bomba de fisión. A los elementos que componen la parte fusionable (deuterio, tritio, litio, etc) se les conoce como secundarios.
La primera bomba de este tipo fue detonada en Eniwetok (atolón de las Islas Marshall) el 1 de noviembre de 1952, durante la prueba Ivy Mike, con marcados efectos en el ecosistema de la región. La temperatura alcanzada en la «zona cero» (lugar de la explosión) fue de más de 15 millones de grados, tan caliente como el núcleo del Sol, por unas fracciones de segundo.
Técnicamente hablando las bombas llamadas termonucleares no son bombas de fusión pura sino fisión/fusión/fisión, la detonación del artefacto primario de fisión inicia la reacción de fusión como la descrita pero el propósito de la misma no es generar energía sino neutrones de alta velocidad que son usados para fisionar grandes cantidades de material fisible (235U, 239Pu o incluso 238U) que forma parte del artefacto secundario.
[editar] Bombas de neutrones
La bomba de neutrones, también llamada bomba N, bomba de radiación directa incrementada o bomba de radiación forzada, es un arma nuclear derivada de la bomba H que los Estados Unidos comenzaron a desplegar a finales de los años setenta. En las bombas H normalmente menos del 25% de la energía liberada se obtiene por fusión nuclear y el otro 75% por fisión. En la bomba de neutrones se consigue hacer bajar el porcentaje de energía obtenida por fisión a menos del 50%, e incluso se ha llegado a hacerlo de cerca del 5%.
En consecuencia se obtiene una bomba que para una determinada magnitud de onda expansiva y pulso térmico produce una proporción de radiaciones ionizantes (radiactividad) hasta 7 veces mayor que las de una bomba H, fundamentalmente rayos X y gamma de alta penetración. En segundo lugar, buena parte de esta radiactividad es de mucha menor duración (menos de 48 horas) de la que se puede esperar de una bomba de fisión.
Las consecuencias prácticas son que al detonar una bomba N se produce poca destrucción de estructuras y edificios, pero mucha afectación y muerte de los seres vivos (tanto personas como animales), incluso aunque estos se encuentren dentro de vehículos o instalaciones blindadas o acorazadas. Por esto se ha incluido a estas bombas en la categoría de armas tácticas, pues permite la continuación de operaciones militares en el área por parte de unidades dotadas de protección (ABQ).
[editar] Bombas «sucias»
Se las confunde a veces con bombas nucleares, pero en realidad no están relacionadas unas con otras.
Las «bombas sucias» consisten en la expansión mediante un explosivo convencional de material radiactivo sobre una área de terreno con el fin de provocar daños a la salud de las personas e impedir la habitabilidad de un territorio, dejando secuelas de este hecho sobre todo aquel ser humano que habite en ese lugar.
Este tipo de armas es más accesible que las armas nucleares por su diseño mucho más sencillo, aunque con un elevado daño potencial para las víctimas que la sufran. Sin embargo, este tipo de artefacto no se puede calificar como bomba nuclear ya que no hace uso de reacción nuclear explosiva alguna. Lo único que tienen en común las bombas sucias y las bombas nucleares es el uso de elementos radiactivos en su dispositivo.
Los proyectiles de uranio empobrecido utilizados por los ejércitos actualmente no se consideran bombas sucias, pues no tienen efectos radiactivos. Se trata del aprovechamiento del uranio empobrecido resultante de la fabricación de uranio enriquecido para los usos civiles de la energía nuclear. Una de las ventajas que aporta el uranio empobrecido en los proyectiles es su elevada densidad como material (mayor que la del plomo), lo que facilita su poder de penetración. Otra es su carácter incendiario, ya que al superar los 600 °C arde espontáneamente. Esto provoca que al penetrar en el objetivo tras el impacto, el proyectil arda instantáneamente incendiando todo lo que está a su alrededor (por ejemplo, la tripulación de un carro de combate y toda su carga explosiva).
Por desgracia, el uso de uranio empobrecido procedente de combustible nuclear reprocesado (y no del sobrante del enriquecimiento de uranio) hace que contenga trazas de plutonio, un material altamente radiactivo que puede provocar cáncer y enfermedades severas a los humanos que entren en contacto con él. Los ejércitos que han usado en sus arsenales este material (como por ejemplo el ejército de Estados Unidos) han reconocido la presencia de trazas de plutonio en sus proyectiles a la vez que se han comprometido a tomar medidas para evitar la contaminación radiactiva tras su uso.
[editar] Denuncia sobre una tercera bomba nuclear (Irak-1991)
En 2008, el exmilitar estadounidense Jim Brown, ingeniero de cuarto grado que combatió en la Operación Tormenta del Desierto de la primera Guerra del Golfo, acusó a la Administración de Estados Unidos de haber lanzado una bomba nuclear de penetración de 5 kilotones de potencia, en una zona situada entre Basora y la frontera con Irán, el 27 de febrero de 1991, último día del conflicto. La cadena pública italiana Rainews24, perteneciente a la RAI, emitió la acusación en un reportaje dirigido por Maurizio Torrealta, tras haber verificado que el Centro Sismológico Internacional registró aquel día, en esa zona, un movimiento sísmico de 4,2 grados en la escala sismológica de Richter, potencia equivalente a 5 kilotones.[1]
En los dos únicos actos de guerra atómicos contra civiles de la Historia humana se utilizaron bombas de 16 kilotones (Hiroshima) y 25 kilotones (Nagasaki).[1]
La investigación incluye datos sobre el aumento de los casos de cáncer y tumores en Basora. Según las declaraciones de Dott Jawad Al Ali (jefe de oncología del hospital local), se ha pasado de 32 casos anuales (en 1989) a más de 600 casos (en 2002). Al Ali opina que la aparición de cánceres muy raros en adultos y sobre todo en niños podría deberse a la utilización irrestricta de proyectiles con uranio empobrecido por parte del ejército estadounidense.[1]
[editar] Explosiones nucleares más importantes en la historia
Explosiones nucleares más importantes en la historia | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lugar | País objetivo | Probador o lanzador de la bomba | Nombre | Potencia | Año | ||||||||||||||
Alamogordo | Estados Unidos | Estados Unidos | Trinity | 20 kt | 1945 | ||||||||||||||
Hiroshima | Japón | Estados Unidos | Little Boy | 12,5 kt | 1945 | ||||||||||||||
Nagasaki | Japón | Estados Unidos | Fat Man | 20 kt | 1945 | ||||||||||||||
Semipalátinsk | Unión Soviética | Unión Soviética | RDS-1 | 22 kt | 1949 | ||||||||||||||
Trimouille | Australia | Reino Unido | Hurricane | 25 kt | 1952 | ||||||||||||||
Atolón Bikini | Estados Unidos | Estados Unidos | Castle Bravo | 15 Mt | 1954 | ||||||||||||||
Nueva Zembla | Unión Soviética | Unión Soviética | Bomba Tsar | 50 Mt | 1961 | ||||||||||||||
Lop Nor | China | China | 596 | 22 kt | 1964 | ||||||||||||||
Kwijili | Corea del Norte | Corea del Norte | - | 1 kt | 2006 |
[editar] Véase también
[editar] Referencias
- ↑ a b c «¿La tercera bomba atómica?», artículo de Miguel Mora en el periódico El País del 8 de octubre de 2008; consultado el 25 de abril de 2012.
[editar] Bibliografía
- Einstein, Albert: Cartas de Albert Einstein a Franklin Delano Roosevelt (presidente de Estados Unidos) a propósito de la bomba atómica.
- Glasstone, Samuel y Dolan, Philip J.: The effects of nuclear weapons. Estados Unidos: U. S. Government Printing Office, tercera edición, 1977.
- Información sobre armas de destrucción masiva, incluidas las armas nucleares, en el sitio de la Federation of American Scientists (Federación de Científicos Estadounidenses).
- OTAN: NATO handbook on the medical aspects of NBC defensive operations (part I - Nuclear). Washington: Departments of the Army, Navy, and Air Force, 1996.
- Preston, Diana: Antes de Hiroshima: de Marie Curie a la bomba atómica. Madrid: Tusquets, 2008. ISBN 978-84-8383-059-8.
- Rhodes, Richard: Dark Sun: the making of the hydrogen bomb. Nueva York: Simon and Schuster, 1995.
- Rhodes, Richard: The making of the atomic bomb. Nueva York: Simon and Schuster, 1986.
- Smyth, H. DeW: Atomic energy for military purposes. Princeton University Press, 1945.
- The effects of nuclear war. Office of Technology Assessment, mayo de 1979.
[editar] Enlaces externos
- Wikimedia Commons alberga contenido multimedia sobre Bomba atómicaCommons.
- Wikiquote alberga frases célebres de o sobre Bomba atómica. Wikiquote
- «Archivo atómico» (en inglés), en el sitio web AtomicArchive.com.
- Archivo de armas nucleares (en inglés), en el sitio web NuclearWeaponArchive.org.
- Noticias sobre armas nucleares, en el sitio web del IPS (Inter Press Service).
- Así funciona un arma nuclear
- Así funciona un arma termonuclear
- Vídeo que muestra el momento en que estalla una bomba atómica